California Central Valley Levee Geotechnical Evaluations: Providing Protection For A Growing Population

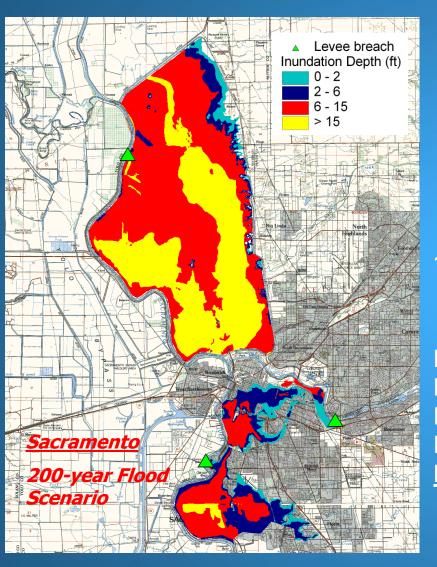
David T. Simpson, C.E.G. URS Corporation

California's Central Valley

Sacramento Valley

Delta

San Joaquin Valley



Sacramento/San Joaquin/Delta levees now protect

- Communities with over 2 million people
- 200 thousand structures with estimated value over \$56 billion
- Public trust resources
- Water supply to 2/3 of California's population
- 1.5 million acres of cultivated land

FLOOD SCENARIO: Flood in Sacramento

Critical Infrastructure Impacted

- 12 Fire stations, 9 have inundation depth of 4 ft or more
 - 1 Police station, minor flooding
- 38 Power substations, including 3 high voltage substations
- 16 Wastewater pump stations; likely many pipe breakages
 - 1 Water treatment plant; water not drinkable
- 2 Airports; including 13 ft flooding of Sac. Intl. Airport
- 4 Hospitals, 2 have 1 ft or more
 26 Medical/health facilities, 19 have 1 ft or more
 193 Licensed care facilities, 176 have 1 ft or more
 65 Schools, 59 have 1 ft or more

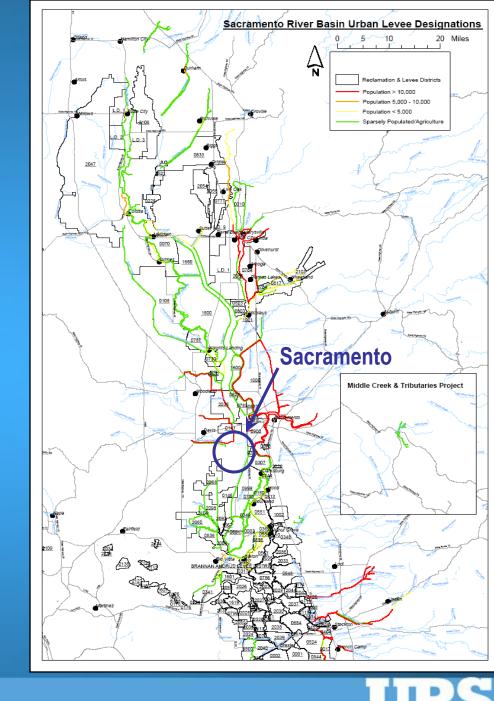
<u>Cost items</u>	<u>Cost</u>
Property damage	\$ 11.2 billion
Displacement/temporary housing	\$ 1.5 billion
_ifeline utility repairs	\$ 24 million
_evee repair and pumping cost	\$ 58 million
Emergency response and recovery	\$ 16 million
	\$ 12.8 billion

Additional indirect fiscal impacts up to \$15 billion

Continuing Development in Deep Floodplain

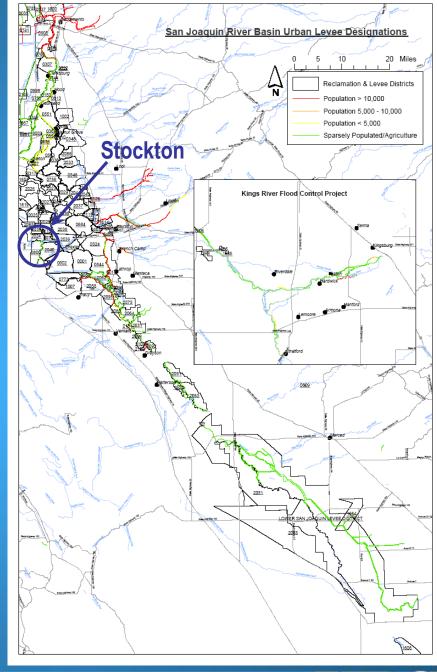
Urbanized Deep Flood Plain

Projected Flooding of Natomas Fire Station


Projected Flooding of Arco Arena, Natomas

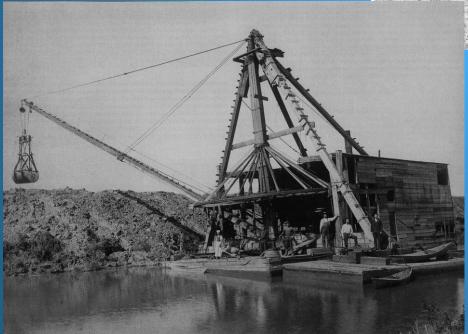
Sacramento Valley

- Urban levees
- Rural levees


<figure>

San Joaquin Valley

- Urban levees
- Rural levees



Historic Levee Construction in California

- Originally built to protect fertile farmland
- Constructed of sand, silt, and peat

- Dredge from adjacent river or slough channel
- Excavate from nearby dry land
- Poor compaction, little segregation of suitable vs. unsuitable materials

Historic Levee Construction in California

Results: Levees were often

- permeable
- easily eroded
- possibly not constructed to sufficient height
- susceptible to great settlement

Land use has changed

The levees were never intended to protect

- Urban areas
- Water supply that is vital to Central and Southern California

Central Valley Delta Region

Affected by unique geologic conditions that are generally not present in Sacramento or San Joaquin Valleys

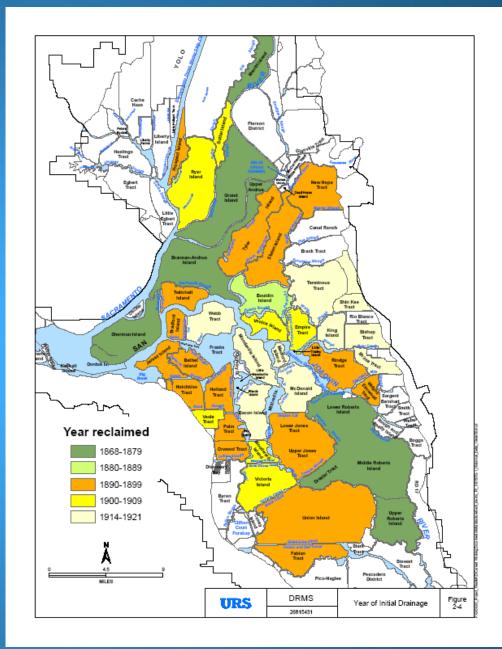
California's Central Valley

Sacramento Valley

Delta

San Joaquin Valley

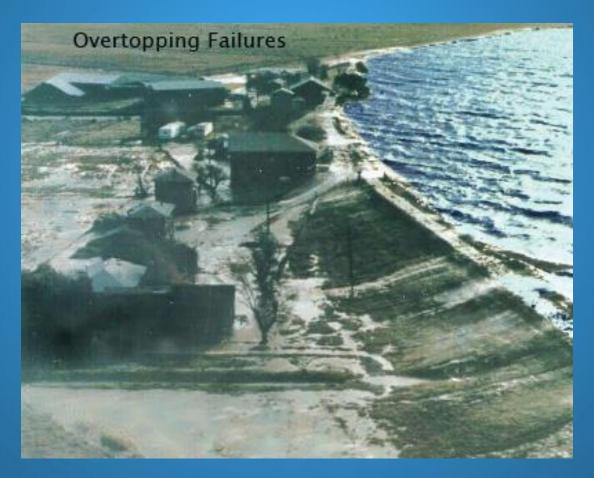
Central Valley Delta Region


- Delta is affected by unique geologic conditions that are generally not present in Sacramento or San Joaquin Valleys
- Wide spread organic soils (peat) are very soft, compressible, and oxidize when exposed to air
- Levee mass compresses underlying peat and settle
- Landside area also settles as organic soils irreversibly oxidize. Many are below sea level.
- Susceptible to failure in earthquakes
- Overtopping and underseepage are big issues

Delta Map

 Broad flat area composed of a series of more than 70 islands

• Islands are created by ring levees that enclose areas that are now often below sea level


Ways that Levees Fail

- Overtopping
- Through Seepage
- Under Seepage
- Slope Instability
- Erosion
- Seismically Induced Failure

Ways that Levees Fail Overtopping

Ways that Levees Fail Through Seepage and Under Seepage

Ways that Levees Fail Erosion and Slope Instability

Bank erosion has reached a critical condition

Ways that Levees Fail

Seismic Shaking

Liquefaction and Settlement

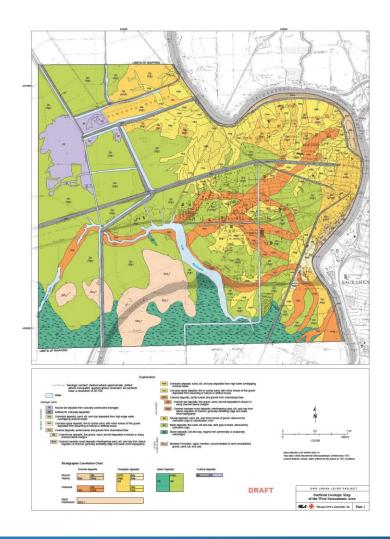
Insufficient Freeboard and Overtopping

Geotechnical Evaluation of Central Valley Levees

Evaluating more than 1750 miles of levees

- Review available historic information and aerial photos
- Perform geologic mapping
- Phased subsurface exploration program and soil testing
- Engineering analyses
- Reporting

Review Available Historic Information and Aerial Photos


- Lots of information is available but is often difficult to locate.
- Meet with Levee District/Reclamation District owners to discuss past performance problems.
- Review historic construction photographs.
- Review aerial photographs.

Geologic Mapping

Map surficial sedimentary geologic units from high altitude aerial photographs Confirm/refine mapping through field checking and subsurface exploration

Geotechnical Evaluation of Central Valley Levees

- Review available historic information and aerial photos
- Perform geologic mapping
- Phased subsurface exploration program and laboratory soil testing
- Engineering analyses
- Reporting

Phased Approach to Subsurface Exploration

- Cost effective
- Involves up to three phases of soil borings
- Many sites may only get first or first and second phases
- Focuses resources on known problem areas immediately

Subsurface Exploration: Primary Soil Borings

- Drilled on levee crest
- Drilled in <u>known</u> problem areas and on 5000-ft spacing

Subsurface Exploration: Secondary Soil Borings

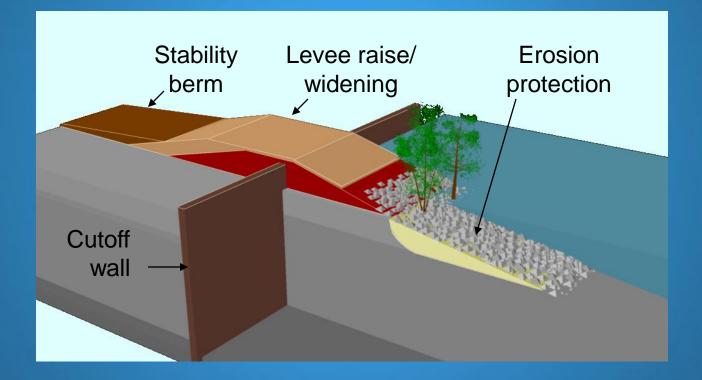
- Drilled in potential problem areas identified during first phase of exploration
- Drilled on landside toe and offset from toe

Subsurface Exploration: Tertiary Soil Borings

Drilled on waterside in problem areas

Geotechnical Evaluation of Central Valley Levees

- Review available historic information and aerial photos
- Perform geologic mapping
- Phased exploration program and laboratory soil testing
- Engineering analyses
- Reporting


Geotechnical Evaluation (continued)

Engineering analyses

- seepage
- slope stability
- seismic
- settlement
- Geotechnical Report
 - Provide recommendations for areas needing repair and type of repair

Examples of Levee Repairs

Cutoff Wall Construction

Issues with Cutoff Walls

- Expensive to construct
- Difficult to confirm that a positive continuous cutoff has been achieved
- Requires closing access along levee crest during construction

Stability Berm

Stability berm for slope stability and/or seepage control

Issues with Stability Berms

- Expensive to construct
- Requires purchasing land or easement parallel to levee
- Requires large volume of imported fill soil

Erosion Protection

Issues with Erosion Protection

- Expensive to construct
- Requires importing large boulders expensive material
- Environmental issues related to working in riparian corridor

Examples of Levee Repairs Setback Levee

Issues with Setback Levees

- Very expensive to construct
- Requires purchasing land for setback levee to be constructed on
- Requires very large volume of imported fill soil
- May also require removal of old levee

Improving Flood Protection for California's Urban Areas is Expensive

- Current Estimates Show that it will cost almost
 \$5 billion to improve flood protection for just the following six communities:
 - Sacramento
 - West Sacramento
 - Stockton
 - Lathrop
 - Marysville/Plumas Lakes
 - Yuba City

\$400 million for West Sacramento alone!

- California State Bonds Provide an Initial \$4.89 Billion in Flood Control Funding
- California Submitted FY09 Federal Funding Requests
 - To the Army Corps of Engineers for 27 critical flood control projects
 - Two of these requests are for studies that are essential to engaging the Corps in developing a comprehensive plan to improve flood control in the Central Valley
 - Sacramento and San Joaquin River Basins Comprehensive Study
 - Sacramento River Flood Control System Evaluation
 - Until these two studies have been completed, the Central Valley's system-wide flood control improvements and the resulting total costs are uncertain

What we want to avoid!

Any questions?

