

Earthquake Monitoring and Reporting through the Advanced National Seismic System

Briefing for the Natural Hazards Caucus February 3, 2006

Dr. William Leith ANSS Coordinator Earthquake Hazards Program

U.S. Department of the Interior U.S. Geological Survey

Earthquakes 🚖 Floods 🚖 Hurricanes 🚖 Landslides 🚖 Tsunamis 🚖 Volcanoes 🚖 Wildfires

Earthquake Losses:

- Earthquakes pose the highest, single-event financial risk of any natural hazard.
- Northridge, California, M 6.8 event of 1994 caused an estimated \$40 billion in losses.
- Kobe, Japan, M 6.8 event of 1995 caused over \$100 billion in direct losses, estimated over \$300 billion total losses
- FEMA estimates <u>annual</u> earthquake losses now \$5.6 billion

What can an advanced earthquake monitoring system do?

- Provide rapid notification of earthquake occurrences and effects to speed emergency response and recovery.
- Promote mitigation through application of earthquake hazard assessments and data in building codes, structure design, and civic planning.
- Provide data for basic and applied research on earthquake effects and to improve hazard assessments.
- Improve public education and awareness.

All of these activities rely on improved monitoring data...

The Advanced National Seismic System

Landslides

Tsunamis

• An integrated national monitoring system

Hurricanes

• A focus on the areas of highest risk

Floods

Earthquakes

≈USGS

- 26 urban areas slated for dense instrumentation
- A commitment to rapid delivery of earthquake information to critcal users and the public
- A strategy to gather critically needed data on earthquake effects on structures
- A system built through close partnerships with States and local jurisdictions

 6000 strong motion sensors in 26 at-risk areas

Volcanoes

Wildfires

- 50% of these instruments in buildings and structures
- 1000 new or upgraded regional stations
- 50 new national backbone stations

The Building Blocks of the ANSS

- National Earthquake Information Center
 - NEIC, Golden, Colorado
- National Seismic Network
 ("ANSS Backbone")
- 15 Regional Seismic Networks

 and data centers at Fairbanks, Seattle, Menlo Park CA, Pasadena CA, Reno. Salt Lake, Memphis, Weston MA
- National Strong Motion Network

≈USGS

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate Strong Very strong Severe			Severe	Violent	Extreme		
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy		
PEAK ACC.(%g)	<.17	.17-1.4	1.4-39	3.9-92	9.2-18	18-34	34-65	65-124	>124		
PEAK VEL.(cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116		
INSTRUMENTAL INTENSITY	I	11-111	IV	V	VI	VII	VIII	IX	X+		

ANSS Costs: Capitalization \$172M, Operations \$43M/yr

≥USGS

Earthquakes 🚖 Floods 🚖 Hurricanes 🚖 Landslides 🚖 Tsunamis 🚖 Volcanoes 🚖 Wildfires

ANSS Accomplishments

- Over 600 new earthquake sensors installed; National and Regional Network Upgrades begun.
- *ShakeMap* capability implemented in Los Angeles, San Francisco, Seattle, Salt Lake and Anchorage
- Real-time products and integrated communications, data analysis, and reporting under development
- Management and technical plans completed; National and regional structures in place and working.

ANSS Products: ShakeMap

rapid mapping of strong ground shaking grew out of the Northridge earthquake experience

Northridge: Intensity IX Parking Garage Collapse

Provides a rapid indication of probable areas of earthquake damage

≥USGS

INSTRUMENTAL INTENSITY	-	11-111	IV	V	VI	VII	VIII	IX	X+
PEAK VEL. (cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
POTENTIAL DAMAGE	none	none	none	Very light	Very light Light Moderate Moderate/Heavy		Heavy	Very Heav	
PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme

Granada Hills: IX Gas/Water Line Rupture

Newhall: Intensity IX Collapse of Overpass

≊USuo

ANSS Backbone Network

In partnership with:

ANSS Backbone: Estimated Detection Capability

Simulated future detection capabilities with 22 planned ANSS backbone stations added

ANS

Structural Array in Atwood Building, Anchorage

Instrumentation monitors for drift, translation, torsion, and rocking

ANSS Performance Goals

Through the modernization, expansion, and integration of earthquake monitoring and notification nationwide the completed ANSS will:

 Provide an accurate assessment of the severity and distribution of strong ground shaking in high-risk urban areas at risk within 10 minutes

 Acquire the seismic data necessary to improve earthquake hazards assessments and <u>improved earthquake resistant</u> <u>construction</u> and performance based design.

 Provide <u>a few tens of seconds</u> warning of imminent strong ground shaking in urban areas.

≈USGS

Modern networks can give detailed picture of seismic shaking in urban areas and possibly give tens seconds warning of imminent ground shaking

Continued Expansion of the System

схре																					-				_	_
the e					se	has	Proof of Concept Phase										ge	Sta	ng S	nin	lan	Ρ				
thor			03			2003						2001				000	20		1999			1998				
uie ii																										
0																			mt.	elop	eve	ts D	nent	iren	qui	Re
Over	•												an	. Pla	gmt	5 Mo	NSS	A								
instr								ĺ	I	cs.	Spe	h. s	Тес													
inctr		Ex30	ent (pme	elo	Dev	mt I	Mg	roj	F	İ							Ì								
IIISCI		evel	A D	Г Е																						
Evon		Te																								
Even																										
man																										
										1	<u> </u>	\	• • •	SM	han	Urt	<u> </u>									
Early	•									:	• SF	<u>,</u> СМ	<u>. </u>		Jun	1										
invog								۱ <u> </u>	CE	см.	<u></u>		2011					<u> </u>	-			-		-		-
III ves					I	<u> </u>	CI (<u>-</u> см.	<u></u>		<u>an .</u>							-								
			-		ch o	<u> </u>		<u>- 141 -</u>			1															
			e eter	l T	CHO	An	5141:	an																		-
ana Natu		i net	etor																					-		
																		_								-
									-	-								-				-				-
	laska)	alif, A	r. (C	.nst	ng I	IIDII	I Bu	iitia	In																	-
idel. Dev	G										-								-					-		-
R	_																									
Work	nent	elopr	Deve	ra [Hyd	ł																				
Recert.	C&A,	tem	Sys																							
velop Sys	De																									

- Expect completion of system development phase in 2007
- Expected 2007 funding will cover only O&M of he existing system and small expansion in he number of instrumented structures
- Over 20 urban areas remain to be nstrumented for ShakeMap, and the 4 of 5 nstrumented cities need additional sensors
- Event reporting will be at minimum performance standards in most areas of the country
- Early warning requires considerable new nvestment

NEIC 24x7 Operation

Install X Structures

Data Archive Eng Data Ctr Product Ctr

NEIC Upgrades

lop System Tools (EIDS, INV, SNW, etc.)

Subsystem C&A

e Network DME in 49 States

RFP & Proc.

≥USGS

Floods

Landslides

\star Tsunamis

