Improving Tornado Warnings: from Observation to Forecast

John T. Snow

Regents' Professor of Meteorology

Dean Emeritus, College of Atmospheric and Geographic Sciences, The University of Oklahoma

Major contributions from:

Dr. Russel Schneider – NOAA Storm Prediction Center

Dr. David Stensrud – NOAA National Severe Storms Laboratory

Dr. Ming Xue – Center for Analysis and Prediction of Storms, University of Oklahoma

Dr. Lou Wicker – NOAA National Severe Storms Laboratory

Hazards Caucus Alliance Briefing
Tornadoes: Understanding how they develop and providing early
warning
10:30 am – 11:30 am, Wednesday, 21 July 2010
Senate Capitol Visitors Center 212

Supercell – A long-lived rotating thunderstorm

the primary type of thunderstorm producing strong and violent tornadoes

Present Warning System: Warn on Detection

- A Warning is the culmination of information developed and distributed over the preceding days → sequence of day-by-day forecasts identifies an area of high threat
- On the day, storm spotters deployed; radars monitor formation, growth of thunderstorms
- Appearance of distinct cloud or radar echo features → tornado has formed or is about to do so → Warning is generated, distributed

Present Warning System: Warn on Detection

- Reactive; responds to what nature is doing
- Tornado Warning lead times average 14 minutes
- Warnings allow individual response

The Future: Radar information assimilated to initialize an ensemble of mesoscale numerical weather prediction models running on high performance computing systems → likelihood, location, and characteristics of a severe thunderstorm/tornado is forecasted well in advance of touchdown, maybe even before storm forms.

Radar information is *essential* but other observations are very valuable

Clear Potential for Improved Severe Weather Forecasts & Subsequent Warnings

43 minute forecast

Actual event as observed with radar

This sophisticated research simulation (50 m grid spacing) illustrates the potential for extended alerts for severe/tornadic thunderstorms

Clear Potential for Improved Severe Weather Forecasts & Subsequent Warnings

Dowell and Wicker (2009)

The Goal: Convective-scale Warnings Based On Forecasts

Stensrud et al. 2009 (October BAMS)

- Proactive: anticipates what nature will do
- More than triple current Tornado Warning lead times
- Improved warnings allow enhanced community response

Challenges to Achieving Warn-on-Forecast

- Many Science Challenges and Questions Remain
 - Improved Observations and Prediction Models → VORTEX2
- High Performance Computing Capacity
 - Research
 - Next generation approaches to storm scale prediction
 - » develop, test, and evaluate at the Hazardous Weather Testbed
 - Explore high resolution ensembles & adaptive computing strategies
 - Requires petaflop machines
 - Operational Forecasts
 - Essential to realize societal benefits of the research
 - » Severe Storms, Aviation, Energy
 - » An ensemble of 20+ forecasts critical to success (cost multiplier)
 - » Competing national requirements
 - Dedicated 365x24x7 HPC services → every day, every hour
 - » Must be timely and reliable
 - Educate, prepare public to utilize this new type of warning